skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Padmanabh, Prajwal V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Pulsar timing is a powerful tool that, by accounting for every rotation of a pulsar, precisely measures the spin frequency, spin frequency derivatives, astrometric position, binary parameters when applicable, properties of the interstellar medium, and potentially general relativistic effects. Typically, this process demands fairly stringent scheduling requirements for monitoring observations as well as deep domain knowledge to “phase connect” the timing data. We present an algorithm that automates the pulsar-timing process for binary pulsars, whose timing solutions have an additional level of complexity, although the algorithm works for isolated pulsars as well. Using the statisticalF-test and the quadratic dependence of the reducedχ2near a minimum, the global rotation count of a pulsar can be determined efficiently and systematically. We have used our algorithm to establish timing solutions for two newly discovered binary pulsars, PSRs J1748−2446aq and J1748−2446at, in the globular cluster Terzan 5, using ∼70 Green Bank Telescope observations from the last 13 yr. 
    more » « less